离语

semaphore

首页 >> 离语 >> 离语最新章节(目录)
大家在看满门炮灰读我心后,全家造反了 小师妹明明超强却过分沙雕 庶女有毒 灯花笑 饥荒年,我囤货娇养了古代大将军 穿越到大梁国从落水开始 快穿之绝色美人她好孕连连 和婆母分家后,盖房囤粮肉满仓 折娇啼 穿越兽世:种田基建养熊猫 
离语 semaphore - 离语全文阅读 - 离语txt下载 - 离语最新章节 - 好看的古言小说

第274章 讲座

上一页书 页下一章阅读记录

年,由 Lewis 等人引入的检索增强生成方法,通过整合来自外部数据库的知识,然后再继续回答问

题或生成文本。这个过程不仅为后续阶段提供信息,而且确保响应是基于检测到的证据的,从而显

着提高输出的准确性和相关性。在推理阶段从外部知识库动态检索信息使 RAG 能够解决诸如生成幻

觉等问题。RAG 与 LLM 的集成得到了迅速的应用,提高了自然语言处理任务的性能,并且使得模型

能够更好地利用外部知识和背景信息。

自 2020 年起,全球大语言模型在自然语言处理、计算机视觉、语音识别、推荐系统等领域表

现出卓越技术优势,市场规模持续增长,预计到 2028 年将达到 1095 亿美元。国外大模型产品研发

在 2021 年进入高速发展期,谷歌、OpenAI、英伟达、微软等公司都推出了自主研发的大模型,截

至 2023 年 7 月底,国外已发布了 138 个大模型。我国大模型发展迅速,与国际前沿保持同步,百

度、腾讯、清华大学、北京航空航天大学等单位都推出了自己的大模型,截至 2023 年七月底,我

国已发布 130 个大模型。

2.2 知识抽取

知识抽取主要分为命名实体识别和关系抽取两方面。命名实体识别(NER)任务,旨在识别与

特定语义实体类型相关联的文本跨度。该任务最早于 1991 年由 Rau 等人提出。随着信息理解、人

工智能等领域的顶级会议对 NER 任务的评测,其定义逐渐细化和完善,并逐渐成为自然语言处理

(NLP)领域的重要组成部分。然而,不同领域对实体类型的定义存在差异,因此 NER 模型的构建

取决于特定领域任务需求,通常涵盖人物信息、地点信息和组织机构信息等。对于英语、法语、西

班牙语等外语文本,通常采用单词作为基本单位,因此基于这些语言的 NER 模型主要关注单词本身

的语义特征和上下文信息。然而,中文语料文本通常由字符构成,需要考虑字符的语义信息和词汇。

特征,同时引入其他表征信息来提升模型性能,如中文分词(CWS)、语义部分标签(POS)等外部

信息,因此构建中文命名实体识别(CNER)模型更为复杂。目前,NER 任务的研究方法主要包括基

于词典和规则的方法、基于机器学习(ML)的方法以及基于深度学习(DL)的方法。

今天为什么讲座要那么长时间。

喜欢离语请大家收藏:(m.38xs.com)离语三八小说更新速度全网最快。

上一页目 录下一章存书签
站内强推剑道第一仙 全球高考 我不是戏神 穿越星际妻荣夫贵 万古第一废材 为奴三年后,整个侯府跪求我原谅 烟雨楼 末日乐园 攀高枝 重生96:权力之巅 全球觉醒:只有我提前布局未来 我为长生仙 重生:权势巅峰 贞观小闲王 天渊 无敌从我看见BOSS血条开始 惊!天降老公竟是首富 知青年代:我有一个暴击系统 穿书七零:开局送走渣爹继母 十里芳菲 
经典收藏小师妹明明超强却过分沙雕 满门炮灰读我心后,全家造反了 上午毁我丹田,下午在你坟前烧纸 快穿,来自末世的穿越之旅 满门反派疯批,唯有师妹逗比 快穿:好孕娇美人靠生子系统上位 庶女有毒 好孕美人多子多福 香归 穿越农门老太太 宿宿我啊,靠生子系统好孕独宠捏 快穿:好孕爆棚,帝王掌中宝 兽世种田:反派崽崽超粘人 【快穿】每个世界去踩坑 穿书之我不做白月光好多年 小太妃的马甲快掉啦 四合院:火红年代小地主 贵女景昭 人在大周,被女帝强纳入宫 二嫁 
最近更新穿越古代,有空间 时光变迁我选择爱你 魔女入仙门卧底,就这个攻略爽! 赎罪营:杀敌百万,我带女帝平天下 荒年恶妇开了挂,逆袭成全县首富 重生之我怎么又又重生了 穿越之我的太子相公 逆袭归来,少城主又美又飒 柳色逢时 快穿:普女被迫成为万人迷 妾室娇软妩媚,太子甘愿诱哄 穿越的我被坑了 为了过上咸鱼生活,我付出了太多 铁血王侯,从赘婿开始称霸 重生之段婉的逆袭 表姑娘她人美心黑 饥荒年,我靠一只碗养活百万古人 捡个破盆能聚宝 魅影幽歌 穿越绝色倾城 
离语 semaphore - 离语txt下载 - 离语最新章节 - 离语全文阅读 - 好看的古言小说