重生学神有系统

一碗酸梅汤

首页 >> 重生学神有系统 >> 重生学神有系统最新章节(目录)
大家在看官海沉浮之美人泪 四合院里的悠哉日子 重生1989:缔造华夏科技帝国 真伤拉满,连鬼神也杀给你看! 四合院一边缘人 四合院:从截胡秦淮茹开始 美女总裁的贴身兵王 幸福生活从1949年开始 我穿梭两界当倒爷 重生男知青,带着系统下乡改造去 
重生学神有系统 一碗酸梅汤 - 重生学神有系统全文阅读 - 重生学神有系统txt下载 - 重生学神有系统最新章节 - 好看的都市小说

第13章 “感知机”和“M-P模型”

上一章书 页下一页阅读记录

说实话,开创“机器学习”新领域,成为“深度学习”等技术路线的指路人,的确十分诱人,光是提出“人工神经网络”的概念,就足以名垂青史了。

但对于自己现在的水平,江寒心里还是很有数的,不谦虚地说,只能算略知一二。

前世虽然上过大学,学的却不是计算机专业,在编程和硬件领域,基本上全靠自己摸索,知识体系并不完善。

至于“人工神经网络”方面,前后只看了几本入门教材,外加在P站看了十几个系列视频教程。

一些重要的概念是清楚的,一些经典算法也是了解的,做一些简单的推演,应该也没什么大问题。

可许多公式背后的原理,当时就没能理解得十分深刻,到了现在,印象就更加模糊了。至于那些需要最先进的数学工具,才能完成的证明与推导……

在机器学习领域,“深度学习”被称作最具颠覆性的理论,以他目前掌握的这点儿皮毛,想要从无到有地开辟出一整条技术路线,难度可想而知。

可难就不搞了吗?

这是个难得的机遇,一定要好好把握才行。只是他还需要好好想一想,如何妥善运用那些“走私”来的知识。

既要充分发掘价值,也要注意合理性。起码拿出来的东西,要符合自己的人设,要找得到合理的解释,免得惹出什么不必要的麻烦……

江寒前思后想,终于做出了决定。

总之,必须尽快将“感知机”的概念抛出去,否则后续的一系列技术,全都得憋在脑袋里,没法拿出来见人。

只是这样一来,估计自己将来基本跑不掉一个“机器学习宗师”、“AI教父”、“人工神经网络创始人”之类的称号了……

别看“感知机”简单,却是“人工神经网络”的基石,很多“机器学习”算法,比如支持向量机(SVM)、深度学习、D-QLearning、生成对抗网络(GAN)……都是在其基础上才发展出来的。

在另一个世界,“感知机”的概念诞生于1957年,由Cornell航空实验室的FrankRosenblatt提出。

本质上是一个线性分类模型,用于解决二元线性分类问题,对应于输入空间中将实例划分为两类的分离超平面,是最简单的前馈人工神经网络。

好吧,说人话。

简单点说,感知机就是一个算法,通过大量训练,可以让电脑掌握某种规则,然后按照这种规则,将输入的数据分成两类。

如果输入的数据空间只有两个维度,将其视作平面直角坐标系,那么“感知机”的图像,其实就是一根直线。

“感知机”虽然简单,还是有点用的。

比如经过训练后,输入身份证号,就能帮你判断出是男是女;比如输入身高和体重,就能判断是否超重……

可能有人会问:随便写个程序,不是很简单就能实现这些功能吗?

但感知机的神奇之处,在于使用同样结构的程序,就能在很多领域里通用,而不用针对性编程。

这是机器学习和常规编程的本质区别。

感知机结构异常简单,工作原理也不复杂,但要想写成论文,也需要进行一些数学推导,以及前置理论。

“感知机”是建立在M-P模型的基础上的。

生物的神经细胞结构,主要由树突、突触、细胞体及轴突组成。单个神经细胞有两种状态:激活或者未激活。

神经细胞是否激活,取决于从其它的神经细胞收到的输入信号量,及突触的强度(抑制或加强)。

当信号量总和超过了某个阈值时,神经元就会激活,产生电脉冲,电脉冲会沿着轴突并通过突触传递到其它神经元……

M-P模型就是模拟生物神经元的工作机制,创建出来的一种数学模型,采用阈值加权和与激活函数来控制信息传导过程,是生物神经元的一种简单抽象。

如果M-p模型的相关论文尚未发表,江寒就需要自己推导,并将其容纳进自己的论文里,否则难以自圆其说。

在写论文前,必须扫清障碍,接下来江寒就开始在网上寻找论文和线索。

功夫不负有心人,江寒几经周折,终于在一个学术网站,找到了那篇讲述M-P模型的论文:《Alogicalcalculusoftheideasimmanentinnervousactivity》。

这篇论文发表也有几十年了,却没在这个世界引起多少关注,引用数更是少得可怜,不过也幸好如此,否则哪轮得到自己来引领时代风骚?

江寒重生前就看过这篇论文,但那时候并没怎么细心揣摩,只是一扫而过,现在为了写出合格的SCI论文,自然要好好琢磨了。

他找来一个只写了两、三页的日记本,边刷论文边记录要点和心得,论文里遇到的术语,如果不十分理解,还要上网寻找文献和参考资料,还要确定来源是否可靠……

本小章还未完,请点击下一页继续阅读后面精彩内容!

上一章目 录下一页存书签
站内强推全球高考 为奴三年后,整个侯府跪求我原谅 末日乐园 全球觉醒:只有我提前布局未来 完蛋!我养的小白脸是京圈太子爷 贞观小闲王 重生1958:从窝在深山打猎开始 我靠打爆学霸兑换黑科技 全民巨鱼求生:我能听到巨鱼心声 灵境行者 庶女有毒 万界聊天群:真千金狂赚百亿爆红 误嫁豪门,闪婚大叔宠爆了 都重生了谁还不无敌 综武反派:开局成功收录小龙女 重生1989:缔造华夏科技帝国 窒息占有 大一实习,你跑去749收容怪物 采阴 妻子的奉献 
经典收藏国民法医 官海沉浮之美人泪 我一个演员,会点功夫很合理吧? 港综:开局跛豪追龙金钱帝国合一 美食:随机摆摊,顾客追我十条街 重生1989:缔造华夏科技帝国 港片:刚成坐馆,手下全是卧底? 娱乐:你拍个戏,演员全是混混? 快穿:全能路人炮灰 四合院:从采购员开始的幸福生活 年代弃妇:靠空间仓库致富 四合院之合家欢乐 华娱:我不能是曹贼 娱乐之快意人生 官道风流 娱乐:一首其实我还好,浴火重生 文娱:一首花海,打造地表最强 社恐的我,被迫闪婚了个国民女神 商踪谍影 港岛:九七前影帝,九七后大亨 
最近更新年轻三十岁,处处碰壁 虽然外表是御姐,但我真是男的啊 赚钱太快,超速了!请出示神豪证 不是哥们,种花种草也能杀人? 我见过很多神豪,他们都叫我神豪 作为路人反派的我,也要当邪神 战神赘婿:黄海平 京城穿越之旅南锣鼓巷66号 重生后被灌入国医知识 跟校花回家,她奶问我要老婆不要 谍战小警察的逆袭 走进荆棘幻梦 从透视开始无敌 逆流时光之界 龙血投资:重生奇幻纪元 19年魔都开局十连抽德械加强团 神农架,我碰到一头巨兽 不是,我到底当姐夫还是妹夫啊? 异能复苏,神话再临! 娱乐之跟景恬做朋友太爽了 
重生学神有系统 一碗酸梅汤 - 重生学神有系统txt下载 - 重生学神有系统最新章节 - 重生学神有系统全文阅读 - 好看的都市小说